top of page
jeycesigenschrisin

3D Active Shutter Glasses Driver: How to Install and Use It for a Better 3D Experience



Nvidia 3D Vision (previously GeForce 3D Vision) is a discontinued stereoscopic gaming kit from Nvidia which consists of LC shutter glasses and driver software which enables stereoscopic vision for any Direct3D game, with various degrees of compatibility. There have been many examples of shutter glasses. Electrically controlled mechanical shutter glasses date back to the middle of the last century. LCD shutter glasses appeared in the 1980s, one example of which is Sega's SegaScope. This was available for Sega's game console, the Master System. The NVIDIA 3D Vision gaming kit introduced in 2008 made this technology available for mainstream consumers and PC gamers.[1]


The roots of the Nvidia stereo driver can be traced to the software supplied with the wired ELSA Revelator shutter glasses from 1990s. Nvidia has acquired the technology and has provided support for various stereoscopic display technologies, including stereoscopic shutter glasses, with their own version driver which only worked with Nvidia graphics cards.




3d active shutter glasses driver




In 2008, Nvidia undertook major rewrite of the driver which was converted to use Windows Display Driver Model, making it only compatible with Windows Vista and Nvidia's glasses. The stereo driver was renamed as 3D Vision driver.


An active shutter 3D system (a.k.a. alternate frame sequencing, alternate image, AI, alternating field, field sequential or eclipse method) is a technique of displaying stereoscopic 3D images. It works by only presenting the image intended for the left eye while blocking the right eye's view, then presenting the right-eye image while blocking the left eye, and repeating this so rapidly that the interruptions do not interfere with the perceived fusion of the two images into a single 3D image.


Modern active shutter 3D systems generally use liquid crystal shutter glasses (also called "LC shutter glasses"[1] or "active shutter glasses"[2]). Each eye's glass contains a liquid crystal layer which has the property of becoming opaque when voltage is applied, being otherwise transparent. The glasses are controlled by a timing signal that allows the glasses to alternately block one eye, and then the other, in synchronization with the refresh rate of the screen. The timing synchronization to the video equipment may be achieved via a wired signal, or wirelessly by either an infrared or radio frequency (e.g. Bluetooth, DLP link) transmitter. Historic systems also used spinning discs, for example the Teleview system.


Although virtually all ordinary unmodified video and computer systems can be used to display 3D by adding a plug-in interface and active shutter glasses, disturbing levels of flicker or ghosting may be apparent with systems or displays not designed for such use. The rate of alternation required to completely eliminate noticeable flicker depends on image brightness and other factors, but is typically well over 30 image pair cycles per second, the maximum possible with a 60 Hz display. A 120 Hz display, allowing 60 images per second per eye, is widely accepted as flicker-free.


Crosstalk is the leakage of frames between left eye and right eye.[6] LCDs have exhibited this problem more often than plasma and DLP displays, due to slower pixel response time. LCDs that utilize a strobe backlight,[7] such as nVidia's LightBoost,[8] reduce crosstalk. This is done by turning off the backlight between refreshes, while waiting for the shutter glasses to switch eyes, and also for the LCD panel to finish pixel transitions.


In March 2011 Panasonic Corporation, together with XPAND 3D, have formulated the M-3DI Standard, which aims to provide industry-wide compatibility and standardization of LC Shutter Glasses. This movement aims to bring about compatibility among manufacturers of 3D TV, computer, notebook, home projection, and cinema with standardized LC shutter glasses that will work across all 3D hardware seamlessly. The current standard is Full HD 3D Glasses[citation needed].


Each different active 3D shutter glasses implementation can operate in their own manufacturer-set frequency to match the refresh rate of the display or projector. Therefore, to achieve compatibility across different brands, certain glasses have been developed to be able to adjust to a broad range of frequencies.[9][10]


In recent decades, the availability of lightweight optoelectronic shutters has led to an updated revival of this display method. Liquid crystal shutter glasses were first invented by Stephen McAllister of Evans and Sutherland Computer Corporation in the mid-1970s. The prototype had the LCDs mounted to a small cardboard box using duct tape. The glasses were never commercialized due to ghosting, but E&S was a very early adopter of third-party glasses such as the StereoGraphics CrystalEyes in the mid-1980s.


Matsushita Electric (now Panasonic) developed a 3D television that employed active-shutter technology in the late 1970s. They unveiled the television in 1981, while at the same time adapting the technology for use with the first stereoscopic video game, Sega's arcade game SubRoc-3D (1982).[11]


The method of alternating frames can be used to render modern 3D games into true 3D, although a similar method involving alternate fields has been used to give a 3D illusion on consoles as old as the Master System and Family Computer. Special software or hardware is used generate two channels of images, offset from each other to create the stereoscopic effect. High frame rates (typically 100fps) are required to produce seamless graphics, as the perceived frame rate will be half the actual rate (each eye sees only half the total number of frames). Again, LCD shutter glasses synchronized with the graphics chip complete the effect.


In 1982, Sega's arcade video game SubRoc-3D came with a special 3D eyepiece,[12] which was a viewer with spinning discs to alternate left and right images to the player's eye from a single monitor.[13] The game's active shutter 3D system was jointly developed by Sega with Matsushita (now Panasonic).[14]


In 1984, Milton Bradley released the 3D Imager, a primitive form of active shutter glasses that used a motorized rotating disc with transparencies as physical shutters, for the Vectrex. Although bulky and crude, they used the same basic principle of rapidly alternating imagery that modern active shutter glasses still use.


Nintendo released the Famicom 3D System for the Famicom in October 1987 in Japan, which was an LCD shutter headset, the first home video game electronic device to use LCD Active Shutter glasses. Sega released the SegaScope 3-D for the Master System Worldwide in November 1987. Only eight 3D compatible games were ever released.


The most prominent example was the ELSA Revelator glasses, which worked exclusively in Nvidia cards through a proprietary interface based on VESA Stereo. Nvidia later bought the technology and used it in its stereo driver for Windows.


The glasses kits came with driver software which intercepted API calls and effectively rendering the two views in sequence; this technique required twice the performance from the graphic card, so a high-end device was needed. Visual glitches were common, as many 3D game engines relied on 2D effects which were rendered at the incorrect depth, causing disorientation for the viewer. Very few CRT displays were able to support a 120 Hz refresh rate at common gaming resolutions of the time, so high-end CRT display was required for a flicker-free image; and even with a capable CRT monitor, many users reported flickering and headaches.


There are many sources of low-cost 3D glasses. IO glasses are the most common glasses in this category. XpanD 3D is a manufacturer of shutter glasses, with over 1000 cinemas currently using XpanD glasses.[17] With the release of this technology to the home-viewer market as of 2009, many other manufacturers are now developing their own LC shutter glasses, such as Unipolar International Limited, Accupix Co., Ltd, Panasonic, Samsung, and Sony.


Nvidia makes a 3D Vision kit for the PC; it comes with 3D shutter glasses, a transmitter, and special graphics driver software. While regular LCD monitors run at 60 Hz, a 120 Hz monitor is required to use 3D Vision.


A synchronization signal is then generated to synchronize the screen's refresh with LC shutter glasses worn by the viewer, using Texas Instruments' proprietary mechanism called DLP Link.DLP Link keeps sync by embedding briefly-flashed white frames during the display's blanking interval, which are picked up by the LC shutter glasses.[22]


Plasma display panels are inherently high-speed devices as well, since they use pulse-width modulation to maintain the brightness of individual pixels, making them compatible with sequential method involving shutter glasses. Modern panels feature pixel driving frequency of up to 600 Hz and allow 10-bit to 12-bit color precision with 1024 to 4096 gradations of brightness for each subpixel.


Matsushita Electric (Panasonic) prototyped the "3D Full-HD Plasma Theater System" on CES 2008. The system is a combination of a 103-inch PDP TV, a Blu-ray Disc player and shutter glasses. The new system transmits 1080i60 interlaced images for both right and left eyes, and the video is stored on 50-gigabyte Blu-ray using the MPEG-4 AVC/H.264 compression Multiview Video Coding extension.


LCD technology is not usually rated by frames per second but rather the time it takes to transition from one pixel color value to another pixel color value. Normally, a 120 Hz refresh is displayed for a full 1/120 second (8.33 milliseconds) due to sample-and-hold, regardless of how quickly an LCD can complete pixel transitions. Recently, it became possible to hide pixel transitions from being seen, using strobe backlight technology, by turning off the backlight between refreshes,[23] to reduce crosstalk. Newer LCD televisions, including high end Sony and Samsung 3D TVs, now utilize a strobed backlight or scanning backlight to reduce 3D crosstalk during shutter glasses operation. 2ff7e9595c


1 view0 comments

Recent Posts

See All

Comments


bottom of page